Efficient Simplicial Reconstructions of Manifolds from Their Samples
نویسنده
چکیده
A new algorithm for manifold learning is presented. Given only samples of a finite-dimensional differentiable manifold and no a priori knowledge of the manifold’s geometry or topology except for its dimension, the goal is to find a description of the manifold. The learned manifold must approximate the true manifold well, both geometrically and topologically, when the sampling density is sufficiently high. The proposed algorithm constructs a simplicial complex based on approximations to the tangent bundle of the manifold. An important property of the algorithm is that its complexity depends on the dimension of the manifold, rather than that of the embedding space. Successful examples are presented in the cases of learning curves in the plane, curves in space, and surfaces in space; in addition, a case when the algorithm fails is analyzed.
منابع مشابه
Kan Replacement of Simplicial Manifolds
We establish a functor Kan from local Kan simplicial manifolds to weak Kan simplicial manifolds. It gives a solution to the problem of extending local Lie groupoids to Lie 2-groupoids.
متن کاملReconstructing Functions from Random Samples
From a sufficiently large point sample lying on a compact Riemannian submanifold of Euclidean space, one can construct a simplicial complex which is homotopy-equivalent to that manifold with high confidence. We describe a corresponding result for a Lipschitz-continuous function between two such manifolds. That is, we outline the construction of a simplicial map which recovers the induced maps o...
متن کاملComputing Invariants of Simplicial Manifolds
This is a survey of known algorithms in algebraic topology with a focus on finite simplicial complexes and, in particular, simplicial manifolds. Wherever possible an elementary approach is chosen. This way the text may also serve as a condensed but very basic introduction to the algebraic topology of simplicial manifolds. This text will appear as a chapter in the forthcoming book “Triangulated ...
متن کاملOn Face Vectors of Barycentric Subdivisions of Manifolds
We study face vectors of barycentric subdivisions of simplicial homology manifolds. Recently, Kubitzke and Nevo proved that the g-vector of the barycentric subdivision of a Cohen–Macaulay simplicial complex is an M -vector, which in particular proves the g-conjecture for barycentric subdivisions of simplicial homology spheres. In this paper, we prove an analogue of this result for Buchsbaum sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 24 شماره
صفحات -
تاریخ انتشار 2002